1,584 research outputs found

    Investigating the Role of Real Divisia Money in Persistence-Robust Econometric Models

    No full text
    This paper investigates the causal relationships between real money and real activity. Whereas previous literature has mainly focused on simple-sum aggregates, we instead use Divisia ones, thus avoiding the so-called Barnett Critique. Standard Granger non-causality tests are implemented in two di¤erent frameworks: Fully Modied VARs (Phillips, 1995) and surplus-lag VARX models (Bauer and Maynard, 2012). These two environments allow modeling mixtures of I(0)/I(1) variables with possible cointegration without pretesting for ntegration nor for the dimension of the cointegration space. Moreover the latter method is also robust to various other forms of persistence such as local-to-unity processes, long memory/fractional integration, or unmodeled breaks-in-mean in the causal variables. By implementing the tests on di¤erent sub-samples identied by standard structural break tests, and using three di¤erent measures of money (DM4, DM4- and DM3), the tests suggest a unidirectional causality from activity to money. Moreover, from one period to another, the whole causal structure of the systems seem to change, as well as the stationarity of the series. At last, the two methodologies return similar results

    Photonic crystal-driven spectral concentration for upconversion photovoltaics

    Get PDF
    International audienceThe main challenge for applying upconversion (UC) to silicon photovoltaics is the limited amount of solar energy harvested directly via erbium-based upconverter materials (24.5 W m(-2)). This could be increased up to 87.7 W m(-2) via spectral concentration. Due to the nonlinear behavior of UC, this could increase the best UC emission by a factor 13. In this paper, the combined use of quantum dots (QDs)for luminescent down-shiftingand photonic crystals (PCs)for reshaping the emissionto achieve spectral concentration is shown. This implies dealing with the coupling of colloidal QDs and PC at the high-density regime, where the modes are shifted and broadened. In the first fabricated all-optical devices, the spectral concentration rises by 67%, the QD emission that matches the absorption of erbium-based upconverters increases by 158%, and the vertical emission experiences a 680% enhancement. Remarkably, the PC redshifts the overall emission of the QDs, which could be used to develop systems with low reabsorption losses. In light of this, spectral concentration should be regarded as one of the main strategies for UC photovoltaics

    Modeling electrodialysis and a photochemical process for their integration in saline wastewater treatment.

    Get PDF
    Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization

    Tribological behaviour of Ti or Ti alloy vs. zirconia in presence of artificial saliva

    Get PDF
    Abutment is the transmucosal component in a dental implant system and its eventual appearance has a major impact on aesthetics: use of zirconia abutments can be greatly advantageous in avoiding this problem. Both in the case of one and two-piece zirconia abutments, a critical issue is severe wear between the zirconia and titanium components. High friction at this interface can induce loosening of the abutment connection, production of titanium wear debris, and finally, peri-implant gingivitis, gingival discoloration, or marginal bone adsorption can occur. As in vivo wear measurements are highly complex and time-consuming, wear analysis is usually performed in simulators in the presence of artificial saliva. Different commercial products and recipes for artificial saliva are available and the effects of the different mixtures on the tribological behaviour is not widely explored. The specific purpose of this research was to compare two types of artificial saliva as a lubricant in titanium-zirconia contact by using the ball on disc test as a standard tribological test for materials characterisation. Moreover, a new methodology is suggested by using electrokinetic zeta potential titration and contact angle measurements to investigate the chemical stability at the titanium-lubricant interface. This investigation is of relevance both in the case of using zirconia abutments and artificial saliva against chronic dry mouth. Results suggest that an artificial saliva containing organic corrosion inhibitors is able to be firmly mechanically and chemically adsorb on the surface of the Ti c.p. or Ti6Al4V alloy and form a protective film with high wettability. This type of artificial saliva can significantly reduce the friction coefficient and wear of both the titanium and zirconia surfaces. The use of this type of artificial saliva in standard wear tests has to be carefully considered because the wear resistance of the materials can be overestimated while it can be useful in some specific clinical applications. When saliva is free from organic corrosion inhibitors, wear occurs with a galling mechanism. The occurrence of a super-hydrophilic saliva film that is not firmly adsorbed on the surface is not efficient in order to reduce wear. The results give both suggestions about the experimental conditions for lab testing and in vivo performance of components of dental implants when artificial saliva is used

    Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes

    Full text link
    This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport of heterostructures. In addition they lead to percolative transport through paths of minimal energy in the 2D landscape of disordered energies of multiple 2D quantum wells. This model solves the carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when compared with the Schr\"odinger equation resolution. The theory also provides a good approximation to the density of states for the disordered system over the full range of energies required to account for transport at room-temperature. The current-voltage characteristics modeled by 3-D simulation of a full nitride-based light-emitting diode (LED) structure with compositional material fluctuations closely match the experimental behavior of high quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in carrier transport through such complex heterostructures. Finally, details of carrier population and recombination in the different quantum wells are given.Comment: 14 pages, 16 figures, 6 table

    Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals

    Get PDF
    This is the post-print version of the final paper published in Journal of Alloys and Compounds. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V.Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH2-catalyst absorbing materials were prepared by ball milling of pure MgH2 with hydrided Zr47Ni53, Zr9Ni11, and other investigated alloys. The nanostructured MgH2-intermetallic systems were tested at 250 °C and catalyst addition of eutectoid Zr47Ni53 resulted in the fastest desorption time and highest initial desorption rate. Also, the catalyzed Mg-hydride with activated Zr9Ni11 and Zr7Ni10 phases showed fast desorption kinetics. Moreover, the results demonstrated that the composition of dispersed ZrxNiy catalysts has a strong influence on the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite.National Research Council Canad

    A Hierarchical Framework for explaining the Cosmic Ray Spectrum using Diffusive Shock Acceleration

    Full text link
    The hypothesis that the entire cosmic ray spectrum, from ≲1 GeV\lesssim1\,{\rm GeV} to ≳100 EeV\gtrsim100\,{\rm EeV} energy, can be accounted for by diffusive shock acceleration on increasingly large scales is critically examined. Specifically, it is conjectured that Galactic cosmic rays, up to ∼3 PeV\sim3\,{\rm PeV}, are mostly produced by local supernova remnants, from which they escape upstream. These cosmic rays initiate a powerful magnetocentrifugal wind, removing disk mass and angular momentum before passing through the Galactic Wind Termination Shock at a radius ∼200 kpc\sim200\,{\rm kpc}, where they can be re-accelerated to account for observed cosmic rays up to ∼30 PeV\sim30\,{\rm PeV}. The cosmic rays transmitted downstream from more powerful termination shocks associated with other galaxies can be further accelerated at Intergalactic Accretion Shocks to the highest energies observed. In this interpretation, the highest rigidity observed particles are protons; the highest energy particles are heavy nuclei, such as iron. A universal "bootstrap" prescription, coupling the energy density of the magnetic turbulence to that of the resonant cosmic rays, is proposed, initially for the highest energy particles escaping far ahead of the shock front and then scattering, successively, lower energy particles downstream. Observable implications of this general scheme relate to the spectrum, composition and sky distribution of Ultra-High-Energy Cosmic Rays, the extragalactic radio background, the Galactic halo magnetic field and Pevatrons.Comment: accepted for publication on Proceedings of Science for the 38th International Cosmic Ray Conference (ICRC2023

    Narrow Band Imaging and High Definition Television in endoscopic evaluation of upper aero-digestive tract cancer.

    Get PDF
    Narrow band imaging and high definition television are recent innovations in upper aero-digestive tract endoscopy. Aim of this prospective, non-randomized, unblinded study was to establish the diagnostic advantage of these procedures in the evaluation of squamous cell cancer arising from various upper aero-digestive tract sites. Between April 2007 and January 2010, 444 patients affected by upper aero-digestive tract squamous cell cancer, or previously treated for it, were evaluated by white light and narrow band imaging ± high definition television endoscopy, both in the pre-/intra-operative setting and during follow-up. Tumour resection was performed taking into account narrow band imaging and high definition television information to obtain histopathologic confirmation of their validity. Endoscopic and pathologic data were subsequently matched to obtain sensitivity, specificity, positive, negative predictive values, and accuracy. Overall, 110 (25%) patients showed adjunctive findings by narrow band imaging ± high definition television when compared to standard white light endoscopy. Of these patients, 98 (89%) received histopatological confirmation. The sensitivity, specificity, positive, negative predictive values, and accuracy for white light-high definition television were 41%, 92%, 87%, 82%, and 67%, for narrow band imaging alone 75%, 87%, 87%, 74%, and 80%, and for narrow band imaging-high definition television 97%, 84%, 88%, 96%, and 92%. The highest diagnostic gain was observed in the oral cavity and oropharynx (25%). Narrow band imaging and high definition television were of value in the definition of superficial tumour extension, and in the detection of synchronous lesions in the pre-/intra-operative settings. These technologies also played an important role during post-treatment surveillance for early detection of persistences, recurrences, and metachronous tumours

    Non-thermal emission from star-forming galaxies detected in gamma rays

    Get PDF
    Star-forming galaxies (SFGs) emit non-thermal radiation from radio to gamma-rays. We aim to investigate the main mechanisms of global CR transport and cooling in SFGs. The way they contribute in shaping the relations between non-thermal luminosities and SFR could shed light onto their nature. We develop a model to compute the CR populations of SFGs, taking into account their production, transport, and cooling. The model is parameterised only through global galaxy properties, and describes the non-thermal emission in both radio and gamma-rays. We focus on the role of diffusive and advective transport by galactic winds, either driven by turbulent or thermal instabilities. We compare model predictions to observations, for which we compile a homogeneous set of luminosities in these radio bands, and update those available in gamma-rays. Our model reproduces reasonably well the observed relations between the gamma-ray or 1.4 GHz radio luminosities and the SFR, assuming a single power-law scaling of the magnetic field with the latter with index beta=0.3, and winds blowing either at Alfvenic speeds or typical starburst wind velocities. Escape of CR is negligible for > 30 Mo/yr. A constant ionisation fraction of the interstellar medium fails to reproduce the 150 MHz radio luminosity throughout the whole SFR range. Our results reinforce the idea that galaxies with high SFR are CR calorimeters, and that the main mechanism driving proton escape is diffusion, whereas electron escape also proceeds via wind advection. They also suggest that these winds should be CR or thermally-driven at low and intermediate SFR, respectively. Our results globally support that magnetohydrodynamic turbulence is responsible for the dependence of the magnetic field strength on the SFR and that the ionisation fraction is strongly disfavoured to be constant throughout the whole SFR range.Comment: Submitted to Astronomy & Astrophysics (on 12/05/2021
    • …
    corecore